A CLASSIFICATION OF LANGUAGE SIGNS

By

© K.B. Kiingi, PhD

kibuukakiingi@yahoo.cm

20TH FEBRUARY 2013

A CLASSIFICATION OF LANGUAGE SIGNS

As a way of developing and stabilizing my domainal role theory¹, I wish , in this short paper, to present a clear application of it to the problem of classifying language signs, i.e. words in spoken language and signs (i.e. in a narrower sense) in sign language. Let the presentation orientate itself towards the adjoining diagram.

Diagram: Classification of language signs

First and foremost, in order to accord with modern predicate logic, signs ω split into predicates π and arguments η .

There are four and only four predicate classes², viz absolute, relative, contactive and causative predicates. An absolute predicate is either a CHANGE BEARER B or NONCHANGE BEARER Z; [Σ] =[B], [Z]. A relative predicate is [Σ X] where X represents REFERENCE R, COMITATIVE J, DIRECTION D, SOURCE S, MEDIATE M, GOAL G, MEASURE Q, MEMBER –OF K PART-OF W, AUGMENTATIVE –OF U, EQUATIVE-OF I, DIMINUTIVE-OF L. A contactive predicate is [ψ A] where ψ =N, T with N as DYNAMIC CONTACTOR, and T as STATIC CONTACTOR; A represents CONTACTED. If [Φ] = [Σ], [Σ X], [ψ A] then a causative predicate is [CE[Φ]] where C and E stand for CAUSER and CAUSED respectively.

Turning to arguments, it is noted that an argument is either an entity $\boldsymbol{\varepsilon}$ or a situation $\boldsymbol{\sigma}$. There are three entity classes: immaterial ι , material μ , and mental γ^3 . An immaterial entity is a MASS a, SET k, UNIT u, NUMBER n, SPACE l, or TIME t. A material entity is a piece of MATTER m, ABIOTIC r, BIOTIC o, PLANT b, ANIMAL z, or HUMAN h. A mental entity is a PERCEPTION e, EMOTION f, COGNITION c, PSYCHOMOTOR v, COMMUNICATION s, or RATIOCINATION p. There are four situation classes: absolute α , relative ρ , contactive τ , and causative χ^4 .

The classification so far is condensable to :

1.
$$\omega = \pi, \eta$$

2. $\pi = [\sum], [\sum X], [\psi A], [CE[\phi]]$
3. $[\sum], [Z], [B]$
4. $\chi = R, J, D, S, M, G, Q, K, W, U, I, L$
(4b) $\psi = N, T$
5. $\eta = \varepsilon, \sigma$
6. $\varepsilon = \iota, \mu, \Upsilon$
7. $\iota = a, k, u, n, l, t$
8. $\mu = m, r, o, b, z, h$
9. $\Upsilon = e, f, c, v, s, p$
10. $\sigma = \alpha, \rho, \tau, \varkappa$

In order to exemplify predicates and arguments in (13)- (20) we need the concepts of domain⁵ and semantic equation⁶ in (11) and (12) respectively.

11.
$$\delta = \iota'', \mu'', \Upsilon'', \alpha'', \rho'', \tau'', \sigma'',$$

12.
$$\sigma = \eta_1 (\sigma) + \dots + \eta_n (\sigma)$$

- 13(a) The ball blackens.
- (13b) Br(m")
- (13c) Br (m'') = $r(\alpha)$
- (14a) The ball becomes black.
- (14b) Br(m") Kk (m")

- (14c) $Br(m'') K k(m'') = r(\rho) + k (\rho)$
- (15a) Fatuma kicks the ball.
- (15b) N h(v'') A r (m'')
- (15c) $Nh(v'') A r(m'') = h(\tau) + r(\tau)$
- (16^a) The farmer slaughters a bull.
- (16b) Ch(v'') E [Bz (o'')]
- (16c) Ch(v'') E [Bz (o'')] = h(x) + z (x)
- (17a) Fatuma gives Ali a ball.
- (17b) $Ch_1(v'') E [Nh_2(v'') A r(m'')]$
- (17c) $Ch_1(v'') E [Nh_2(v'') Ar(m'')] = h_1(\varkappa) + h_2(\varkappa) + r \varkappa$)
- (18a) Fatuma (h) opened the door (r_2) with a key (r_1) .
- (18b) $Ch(v'') E[Cr_1(m'') E[Br_2(m'')]]$
- (18c) $Ch(v'') E[Cr_1(m'') E[Br_2(m'')]] = h(x) + r_1(x) + r_2(x)$
- (19a) Fatuma teaches Ali theoretical physics at home.
- (19b) $[Ch_1(Y)E [Nh_2(Y)Ak(Y)]] Rl (h'')$
- (19c) $[Ch_1(\Upsilon)E[Nh_2(\Upsilon)Ak(\Upsilon)]] Rl(h'') = h_1(\varkappa) + h_2(\varkappa) + k(\varkappa) + l(\varkappa)$
- (20a) Writing leads to fame.
- (20b) $C \varkappa (s'') E [B\alpha (f'')]$
- (20c) $C \varkappa$ (s") $E [B\alpha (f")] = \varkappa(\varkappa) + \alpha(\varkappa)$

From this paper, four conclusions are drawable.

First, it is to be noted that formalization in domainal role theory is clearly an elaboration on that in predicate⁷ calculus; in fact it can be made more compact as shown in $(14)^{\prime}$ – $(20)^{\prime}$.

(14)′	r[BK]k	OR	[BK] 1	rk
(15)′	h[NA]r	OR	[NA]]	hr
(16)′	h[CE[B]]z	OR	[CE[E]]hz
(17)′	h ₁ [CE[NA]]]	$h_2 r$	OR	$[CE[NA]]h_1 h_2 r$
(18)′	h[CE[CE[B]]]] r ₁ r ₂	OR	$[CE[CE[B]]] h r_1 r_2$
(19)′	ж [BR] <i>OR</i>	[BR])	٢l	

(20)' \varkappa [CE[B]] α OR [CE[B]] $\varkappa \alpha$

Second, taking Ugandan Sign Language (USL) as a test language, it is hypothesizable that generation of predicates from semantic roles (or functions) meshes very well with the isomorphism between syntax and semantics as shown in (21-(26)⁸.

(21) $\langle S \| V \rangle \cong [\Sigma]$ (22) $\langle S X \| V \rangle \cong [\Sigma X]$ (23) $\langle S O \| V \rangle \cong [\Psi A]$

<21>(24)	<so v></so v>	2II	[CE[Σ]]
<22>(25)	<so x v=""></so>	211	[CE[X]]
<23>(26)	<s o="" v=""></s>	2II	[CE[ΨA]]

Third, without recourse to the syntactic functions in spoken language, the basic sentence patterns of English and USL can be compared as follows:

Universal Predicate	Basic English Sentence Pattern	Basic USL Sentence Pattern
[Σ]	<η _I [X]>	<η [Σ]>
[ΣX]	<η _I [ΣX]η>	<η _I η [Σχ]>
[ΨA]	< η _ι [ΨΑ]η>	<η _I η [ΨA]>
[CE[Σ]]	<η _{II} [CE[Σ]]η _I >	$<\eta_{II} \eta_{I} \parallel [CE[\Sigma]]>$
[CE[ΣA]]	<η _{II} [CE[Σχ]]η _I η>	$<\eta_{II}\eta_{I}\eta_{I}\eta$ (CE[$\Sigma\chi$])>
[CE[ΨA]]	<η _{II} [CE[ΨA]]η _I η>	$<\eta_{II} \eta_{I} \eta [CE[\Psi A]] >$

Fourth, and finally, this paper seems to adumbrate the idea of a grammar without nouns, verbs, adjectives, and prepositions. In such a predicate grammar, a search for "word" classes in sign language would no longer be a captivating occupation, for aural-oral signs of spoken language and visual-gestural signs of signed language are subsumable under predicates and arguments.

NOTES

¹ In K.B.Kiingi (30th May 2012) A FORMALIZED DOMAINAL ROLE THEORY (updated version) <u>http://www.luganda.com</u>

² The four predicate classes [Σ], [ΣX], [ΨA], and CE[φ], where $\varphi = [\Sigma]$, [$\Sigma \chi$], [ΨA] are motivated by considering change or nonchange as absolute, relative, contactive or causative in the fundamental sciences, i.e. logic, mathematics, and physics (particularly mechanics: dynamics and statics).

³ Just like the four predicate classes, the entity classes are extracted from the fundamental sciences: logic, mathematics, physics, chemistry, biology, and psychology.

⁴ The predicate classes [Σ], [$\Sigma\chi$], [Ψ A] and [CE[φ], give rise to absolute, relative, contactive, and causative situations respectively.

⁵ A semantic domain is a finite or nonfinite argument within which another given argument persists either statically or dynamically; e.g. h(n'') h(l''), h(m''), h(o''), h(Y'').

⁶ A semantic equation is a relation between a situation (or state-of-affairs) and the products thereof.

⁷ Note that (semantic) predicate generation , e.g. CE[B], [CE[NA]], [CE[CE[B]]] in (16) –(18). C, E, B, N, and A are semantic roles.

⁸ Here, S = Subject, X = Nonobject, O = Object, V = Predicator (or, loosely, Verb). Again , here, Nonobject is what some linguists and grammarians variously refer to as Complement or Adverbial.